\qquad
Date \qquad Period \qquad
Teacher \qquad
A. Review. Identify the vertex and direction of opening for each quadratic function given in standard form.

1. $y=-3 x^{2}-18 x+11$
2. $y=x^{2}+8 x-3$
3. $y=x^{2}-6 x+1$
4. $y=-8 x^{2}+3$

B. Intercept Form of a Quadratic Function: $y=a(x-p)(x-q)$

Characteristics of the graph:

1. The x-intercepts are p and q.
2. The vertex \& axis of symmetry are halfway between $(p, 0)$ and $(q, 0)$.
3. The graph opens up if $\mathrm{a}>0$ and opens down if $\mathrm{a}<0$.

Example: Graph $y=-(x+2)(x-4)$. The x-intercepts occur at $(-2,0)$ and $(4,0)$. The vertex $\&$ axis of symmetry lie halfway between these points, at $\mathrm{x}=1$. So, the x -coordinate of the vertex is $\mathrm{x}=1$ and the y coordinate of the vertex is: $y=-(1+2)(1-4)=9$ thus giving a vertex at $(1,9)$. Since a is negative, the graph opens down.

C. Graph each quadratic given in intercept form. Identify the x-intercepts, vertex, direction of opening, and axis of symmetry.
5. $y=4(x+1)(x-1)$
x -intercepts: \qquad
Vertex: \qquad

Axis of sym: \qquad
Opens: \qquad

6. $y=-3 x(x-2)$
x-intercepts: \qquad

Vertex: \qquad

Axis of sym: \qquad

7. $y=\frac{1}{2}(x+5)(x+1)$
x-intercepts: \qquad

Vertex: \qquad

Axis of sym: \qquad
Opens: \qquad

D. Re-write each quadratic function in standard form. Identify the vertex and direction of opening.
8. $y=-2(x)(x+6)$
9. $f(x)=\frac{2}{3}(x-9)^{2}-4$
10. $g(x)=3(x-6)(x-4)$
11. $y=-4(x+3)^{2}+2$

